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Abstract— An overview of a normal mode method of solving
the Helmholtz wave equation to describe the underwater sound
field for a fixed point source in a plane multilayered medium is
presented. The mode functions are well-defined at all depths of
the medium as they are continuous across turning points of the
separated depth-dependent differential equation. Comparisons of
model results to a limited number of benchmark propagation
soultions are presented.

I. INTRODUCTION

This paper presents a normal mode propagation model
which utilizes Bessel functions of order 1/3 as solutions
to the depth dependent wave equation. The use of 1/3-
order Bessel functions to predict propagation is not new (see,
for example [1]). The advantage of the approach is that it
marries the computational efficiency of asymptotic solutions
[2] with the rigor of normal mode solutions. Unlike traditional
asymptotic methods (see, for example [3]), the Bessel function
formulation enables the normal mode amplitude functions to
be computed so as to be continuous at all depths of a stratified
ocean, and in particular to behave linearly through the turning
points of the separated differential equation.

A. Model Approach

Assuming sound pressure ϕ has no azimuthal dependence,
the Hemholtz wave equation can be expressed in cylindrical
coordinates as

∂2ϕ

∂r2
+

1
r

∂ϕ

∂r
+

∂2ϕ

∂z2
=

1
c2

∂2ϕ

∂t2
,

where r represents horizontal range, t represents time, c is
sound speed as a function of depth, z, which is increasing
down from the ocean surface. After separation of variables,
the depth dependent function u(z) is given by

u′′(z) + k2
z(z)u(z) = δ(z − zs), (1)

where the separation constant kr corresponds to the horizontal
component of the local wavenumber, k2

z(z) = ω2

c2(z) −k2
r is the

vertical component of the local wavenumber, and we assume
continuous propagation of a harmonic point source of unit
intensity at depth zs.

Dropping the subscript r on the horizontal wavenumber kr

for simplicity of notation, let z = z0 be a turning point for
the wavenumber k, thus k2

z(z0, k) = 0. By expressing k2
z as

a linear function of z in a neighborhood z0 and performing a
change of variable to express Eq. (1) as a function of vertical
phase, ξ(z, k) =

∫ z

z0
kz(z, k)dz, yields Bessel’s equation of

order 1/3 [4]

d2y

dξ2
+

1
ξ

dy

dξ
+ (1 − 1

9ξ2
) = 0.

Thus cylinder functions of order 1/3 provide solutions for u,
for example,

u = (z − z0)1/2J1/3(ξ).

We choose, for convenience, to use the modified Bessel
functions ξ1/3J1/3(ξ) as the fundamental solutions for the
Green’s function construction. Although the Bessel functions
are used for computation, the Hankel functions are better
suited to the acoustic problem. For consistency with the
asymptotic exponential solutions used in the Integrated Mode
approach [5], we express the Hankel functions as linear
combinations of Bessel functions,

H
(1)
1/3(ξ) = ie−iπ/3√

3/2
J1/3(ξ) − i√

3/2
J−1/3(ξ),

H
(2)
1/3(ξ) = −ie−iπ/3√

3/2
J1/3(ξ) + i√

3/2
J−1/3(ξ).

Neglecting higher order terms, since ξ and k2
z are proportional

to (z − z0)3/2 and (z − z0), respectively, we have (z − z0)
proportional to ξk−1

z . Thus, for the case of linear turning
points, a set of allowable solutions for propagation towards
and away from z0 when compared with time dependence eiωt

are given by

u1 = K1

√
ξ
kz

H
(1)
1/3(ξ),

u2 = K2

√
ξ
kz

H
(2)
1/3(ξ),

(2)

where k2
z > 0 is assumed and K1,2 =

√
π
2 e±

5π
12 , respectively.

The reason for using the Hankel functions is apparent when
the asymptotic expansions are employed. The leading terms
of the asymptotic expansions of H

(1)
1/3(ξ) and H

(2)
1/3(ξ) when

arg(ξ) > −π are given by [4] as

H
(1)
1/3(ξ) ∼

√
2

πξ ei(ξ−5π/12),

H
(2)
1/3(ξ) ∼

√
2

πξ e−i(ξ−5π/12).

(3)
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Fig. 1. Indexing of Sound Speed Regions with Monotone Gradient

Substitution of (3) into (2) yields

u1 ∼
√

2
π e−i5π/12 1√

kz
eiξ,

u2 ∼
√

2
π e−iπ/12 1√

kz
e−iξ,

which are valid away from the turning point z = z0 on the
side where |cosθ| < 1 (they become infinite when k2

z = 0).
The Bessel function expressions (2) allow the solution of the
differential equation to be approximated over a specific z-
interval, both near and away from z0, and they agree with the
exponential solutions (3) in regions where they are oscillatory.

1) Solutions in Layered Media: For the acoustic propaga-
tion problem, the modified Hankel functions (2) cannot be used
in a depth interval where more than one turning point exists, as
in a refracting sound channel, for example. Thus, we subdivide
the water column into regions containing at most one turning
point as shown in Fig. 1.

The fundamental solutions are computed in each region
by measuring the vertical phase to the only possible turning
point. A solution satisfying a given boundary condition is then
expressible as a linear combination of the two fundamental
solutions. If the coefficients of the required linear combination
are known in one region for a given wavenumber, k, the
solution can be extended into an adjacent region by satisfying
continuity conditions for solutions and their derivatives across
the region boundary.

2) Benchmark Cases: A number of benchmark cases are
presented for which the model results agree with KRAKEN
[6] and COUPLE [7]. The first case is Test Case 7 from the
Second Parabolic Equation Workshop held at Stennis Space
Center, MS in May, 1991 [8], and the remaining three cases are
taken from a text by C. Allan Boyles [9]. Since the COUPLE
model results are in agreement with KRAKEN in all cases,
only the KRAKEN results are included in the plots.

II. CONCLUSION

A normal mode model which utilizes Bessel functions of
order 1/3 has been verified on a number of benchmark cases

1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525

0

500

1000

1500

2000

2500

3000

3500

4000

Sound Speed (m/s)

D
e
p
th

 (
m

)

Fig. 2. Sound Speed Profile for PE Workshop Test Case 7
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Fig. 3. Propagation Loss for PE Workshop Test Case 7
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Fig. 4. Sound Speed Profile for Boyles Convergence Zone Environment
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Fig. 5. Propagation Loss for Boyles Convergence Zone Environment
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Fig. 6. Sound Speed Profile for Boyles Double Duct Environment

and one measured data set, all involving water-borne prop-
agation. An overview of the model derivation was followed
by a set of model predictions for modes within the water
column. The solution represents a compromise between tradi-
tional asymptotic solutions which are computationally efficient
and more rigorous models which are typically computation-
intensive. Thus, the rigor of more comprehensive solutions
is retained without sacrificing the efficiency of asymptotic
methods. This is accomplished by a particular formulation of
the characteristic functions using Bessel functions of order
1/3, thus enabling the mode amplitude functions to remain
continuous through turning points of the depth-dependent
differential wave equation. The Bessel function argument is
chosen carefully in various regions of the complex plane so as
to avoid the Stokes phenomenon where solutions can change
abruptly across region boundaries.

The long-term goal of this research is the development,
implementation, and fielding of a concise but rigorous full-
spectrum prediction capability which integrates the above ap-
proach with solutions which handle both boundary interactions
and mode coupling effects which occur in the propagation
of low frequency signals in shallow water environments. The
integration of these methods is full-spectrum in the sense that
it is contiuous across all operational sonar frequencies and in
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Fig. 7. Propagation Loss for Boyles Double Duct Environment

transitions between deep and shallow water.
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